Как стать автором
Обновить

Космический хамелеон или за что дали Нобелевскую премию по физике 2015

Время на прочтение 8 мин
Количество просмотров 20K
Нобелевская премия 2015 года вручена за “открытие нейтринных осцилляций, которые доказывают, что нейтрино обладает массой”

В 1998 году Такааки Каджиита (Takaaki Kajita), участник в то время коллаборации Super-Kamiokande, представил данные, демонстрирующие исчезновение атмосферных мю-нейтрино, то есть нейтрино, образованных при прохождении космических лучей через атмосферу, на пути их полета к детектору. В 2001 году Артур Б. Макдональд (Arthur B. McDonald), руководитель Sudbury Neutrino Observatory (SNO) Collaboration, опубликовал доказательства превращения солнечных электронных нейтрино в мю- и тау-нейтрино. Эти открытия имели большое значение и ознаменовали прорыв в физике элементарных частиц. Нейтринные осцилляции и взаимосвязанные вопросы природы нейтрино, массы нейтрино и возможности нарушения симметрии зарядового соотношения лептонов – это важнейшие на сегодняшний день вопросы космологии и физики элементарных частиц.

Мы живем в мире нейтрино. Тысячи миллиардов нейтрино “протекают” через наше тело каждую секунду. Их нельзя увидеть и нельзя почувствовать. Нейтрино проносятся через пространство почти со скоростью света и практически не взаимодействуют с веществом. Существует огромное количество источников нейтрино как в космосе, так и на Земле. Часть нейтрино родилась в результате Большого Взрыва. А сейчас источники нейтрино — это и взрывы супер новых звезд, и распад звездных супергигантов, а также радиоактивные реакции на атомных электростанция и процессы естественного радиоактивного распада в природе. Таким образом, нейтрино это вторые по численности элементарные частицы после фотонов, частиц света. Но несмотря на это, долгое время их существование не было определено.

Возможность существования нейтрино была предложена австрийским физиком Вольфгангом Паули как попытка объяснить превращение энергии при бета-распаде (вид радиоактивного распада атома с излучением электронов). В декабре 1930 года он предположил, что часть энергии забирает с собой электрически нейтральная, слабовзаимодействующая частица с очень малой массой (возможно, безмассовая). Сам Паули верил в существование такой частицы, но вместе с тем, он понимал как трудно обнаружить частицу с такими параметрами методами экспериментальной физики. Он писал об этом: “Я совершил ужасную вещь, я постулировал существование частицы, которая не может быть обнаружена“. В скором времени, после открытия в 1932 году массивной, сильновзаимодействующей частицы, похожей на протон, но только нейтральной (часть атома — нейтрон) итальянский физик Энрико Ферми предложил неуловимую элементарную частицу Паули назвать – нейтрино.

Возможность обнаружить нейтрино появилась только в конце 50х годов, когда было построено большое количество атомных электростанций и поток нейтрино значительно возрос. В 1956 году Ф. Райнс (также в последствии лауреат Нобелевской премии 1995 года) провел эксперимент по реализации идеи советского физика Б.М. Понтекорво по детектированию нейтрино и антинейтрино на ядерном реакторе в Южной Королине. В результате он отправил телеграмму Вольфгангу Паули (всего за год до его смерти), в которой сообщал, что нейтрино оставили следы в их детекторе. А уже в 1957 году Б.М. Понтекорво опубликовал ещё одну пионерскую работу по нейтрино, в которой первым выдвинул идею осцилляций нейтрино.
С 60х годов ученые активно стали развивать новое научное направление – нейтринную астрономию. Одна из задач состояла в том, чтобы подсчитать количество нейтрино, родившихся в результате ядерных реакций на Солнце. Но попытки зарегистрировать расчетное количество нейтрино на Земле показывали, что отсутствует примерно две третьих нейтрино! Конечно, могли быть ошибки в произведенных расчетах. Но одно из возможных решений заключалось в том, что часть нейтрино изменяли свой тип. В соответствии с действующей сегодня в физике элементарных частиц Стандартной Моделью (рисунок 1), существует три типа нейтрино – электронные нейтрино, мю-нейтрино и тау-нейтрино.

image
Рисунок 1 — Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Содержит 6 лептонов (электрон, мюон, тау-лептон, электронное нейтрино, мюонное нейтрино и тау-нейтрино), 6 кварков (u, d, s, c, b, t) и 12 соответствующих им античастиц. (http://elementy.ru/LHC/HEP/SM)

Каждому типу нейтрино соответствует его заряженный партнер – электрон, и две других более тяжелых, обладающих меньшим временем жизни частицы — мюон и тау-лептон. В результате ядерных реакций на Солнце происходит рождение только электронных нейтрино и недостающие нейтрино могли бы быть найдены, если бы по пути на Землю электронные нейтрино могли превращаться в мю-нейтрино и тау-нейтрино.

Поиски нейтрино глубоко под землей

Поиск нейтрино ведется непрерывно, днем и ночью, на установках колоссального размера, построенных глубоко под землей для экранирования посторонних шумов, создаваемых космическим излучением и спонтанными радиоактивными реакциями в окружающей среде. Очень тяжело отличить сигналы нескольких настоящих солнечных нейтрино от миллиардов ложных.

Нейтронная обсерватория Super-Kamiokande построена в 1996 году под горой Kamioka в 250 км на северо-запад от Токио. Другая обсерватория Sudbury Neutrino Observatory (SNO) была построена в 1999 году в никелевом руднике вблизи Онтарио.

image
Рисунок 2 – Super-Kamiokande – это детектор атмосферных нейтрино. Когда нейтрино взаимодействует с водой, образуется электрически заряженная частица. Это приводит к возникновению излучения Черенкова-Вавилова, которое регистрируется детекторами света. Форма и интенсивность спектра излучения Черенкова-Вавилова позволяет определить тип частицы и откуда она прилетела.

Super-Kamiokande – это гигантский детектор, построенный на глубине 1000 метров. Он состоит из бака размерами 40 на 40 метров, заполненного 50 000 тонн воды. Вода в баке такой чистоты, что свет может пройти расстояние в 70 метров, прежде чем его интенсивность уменьшится в два раза. В обычном бассейне для плавания это расстояние составляет всего пару метров. По сторонам бака, на его верхней и нижней частях расположено 11 000 детекторов света, позволяющие зарегистрировать малейшую вспышку света в воде. Большое количество нейтрино проходит сквозь бак с водой, но только некоторые из них взаимодействуют с атомами и/или электронами с образованием электрически заряженных частиц. Мюон образуются из мю-нейтрино и электроны из электронных нейтрино. Вокруг образованных заряженных частиц образуются вспышки голубого света. Это, так называемое, излучение Черенкова-Вавилова, которое возникает при движении заряженных частиц со скоростью, превышающей скорость света в данной среде. И это не противоречит теории Эйнштейна, которая гласит, что ничто не может двигаться со скоростью выше скорости света в вакууме. В воде скорость света составляет только 70 % от скорости света в вакууме и, поэтому, может перекрыта скоростью движения заряженной частицы.

При прохождении космического излучения через слои атмосферы рождается большое количество мю-нейтрино, которым необходимо пройти до детектора путь лишь в несколько десятков километров. Super-Kamiokande может детектировать мю-нейтрино приходящие прямо из атмосферы, а также те нейтрино, которые попадают на детектор с обратной стороны, проходя сквозь всю толщу земного шара. Ожидалось, что количество мю-нейтрино детектируемых в двух направлениях будет одинаковым, ведь толща земли не представляет для нейтрино какой-либо преграды. Однако, количество нейтрино попадающих на Super-Kamiokande прямо из атмосферы было значительно больше. Количество же электронных нейтрино приходящих в обоих направлениях не отличалось. Получается, что та часть мю-нейтрино, которая проходила больший путь сквозь толщу земли, скорее всего превращалась каким-то образом в тау-нейтрино. Однако, зарегистрировать данные превращения напрямую в обсерватории Super-Kamiokande было невозможно.

Чтобы получить окончательный ответ на вопрос о возможности нейтринных превращений или нейтринных осцилляций был реализован еще один эксперимент во второй нейтринной обсерватории Sudbury Neutrino Observatory (рисунок 3). Она была построена на глубине 2000 метров под землей и оснащена 9500 детекторов света. Обсерватория предназначена для детектирования именно солнечных нейтрино, энергия которых значительно меньше, чем рожденных в слоях атмосферы. Бак заполнялся не просто очищенной водой, а тяжелой водой, в которой каждый атом водорода в молекуле воды имеет дополнительный нейтрон. Таким образом, вероятность взаимодействия нейтринно с тяжелыми атомами водорода значительно выше. Кроме того, наличие тяжелых ядер позволяет нейтрино взаимодействовать с протеканием других ядерных реакций, а следовательно, будут наблюдаться световые вспышки другой интенсивности. Некоторые типы реакций позволяют детектировать все типы нейтрино, но к сожалению, не позволяют точно отличить один тип от другого.

image
Рисунок 3 – Sudbury Neutrino Observatory – это детектор солнечных нейтрино. Реакции между тяжелыми ядрами водорода и нейтрино дают возможность регистрировать как только электронные нейтрино, так и все типы нейтрино одновременно. (иллюстрации 2 и 3 с сайта нобелевского комитета nobelprize.org и шведской академии наук kva.se)

После начала эксперимента обсерватория детектировала 3 нейтрино в день из 60 миллиардов нейтрино через 1 см2, прилетающих на Землю от Солнца. И все равно это было в 3 раза меньше расчетного количества электронных солнечных нейтрино. Суммарное же количество всех типов нейтрино, задетектированных в обсерватории, с высокой точностью соответствовало ожидаемому числу нейтрино, испускаемых Солнцем. Обобщение экспериментальных результатов двух нейтринных обсерваторий, теории предложенной Понтекорво о принципиальной возможности нейтринных осцилляций позволило доказать существование нейтринных превращений на пути от Солнца на Землю. В этих двух обсерваториях Super-Kamiokande и Sudbury Neutrino Observatory впервые были получены описанные результаты и в 2001 году предложена их интерпретация. Чтобы окончательно убедиться в правильности проведенных экспериментов, спустя год, в 2002 году начался эксперимент KamLAND (Kamioka Liquid scintillator AntiNeutrino Detector), в котором в качестве источника нейтронов использовали реактор. Спустя несколько лет, после накопления достаточной статистики, результаты по превращению нейтрино были подтверждены с высокой точностью.

Чтобы объяснить механизм нейтринных превращений или нейтринных осцилляций ученые обратились к классической теории квантовой механики. Эффект превращения электронных нейтрино в мю- и тау-нейтрино предполагает с точки зрения квантовой механики наличие у нейтрино массы, иначе данный процесс невозможен даже теоретически. В квантовой механике частице определенной массы соответствует волна определенной частоты. Нейтрино представляют собой суперпозицию волн, которые и соответствуют нейтрино различного типа с различной массой. Когда волны софазны невозможно отличить один тип нейтрино от другого. Но за значительное время движения нейтрино от Солнца до Земли может происходить дефазировка волн и потом возможна их последующая суперпозиция другим образом. Тогда и становится возможным отличить один тип нейтрино от другого. Такие своеобразные изменения происходят из-за того, что различные типы нейтрино имеют различные массы, но отличающиеся на очень малую величину. Масса нейтрино оценивается в миллионы раз меньше, чем масса электрона – это ничтожна малая величина. Однако, за счет того, что нейтрино весьма распространенная частица, сумма масс всех нейтрино приблизительно равна массе всех видимых звезд.

Не смотря на такие успехи физиков многие вопросы остаются до сих пор нерешенными. Почему нейтрино такие легкие? Существуют ли другие типы нейтрино? Почему нейтрино так сильно отличаются от других элементарных частиц? Эксперименты продолжаются и есть надежда, что они позволят узнать новые свойства нейтрино и, таким образом, приблизить нас к понимаю истории, структуры и будущего Вселенной.

Подготовлено по материалам с сайта nobelprize.org.

Популярная литература и ресурсы по теме:

1. Hulth, P.O. (2005) High Energy Neutrinos from the Cosmos, www.nobelprize.org/nobel_prizes/themes/physics/hulth
2. Bahcall, J.N. (2004) Solving the Mystery of the Missing Neutrinos, www.nobelprize.org/nobel_prizes/themes/physics/bahcall
3. McDonald, A. B., Klein, J. R. och Wark, D. L. (2003) Solving the Solar Neutrino Problem, Scientific American, Vol. 288, Nr 4, April
4. Kearns, E., Kajita, T. och Totsuka, Y. (1999) Detecting Massive Neutrinos, Scientific American, Vol. 281, Nr 2, August
5. nobelprize.org
6. elementy.ru
Теги:
Хабы:
+16
Комментарии 29
Комментарии Комментарии 29

Публикации

Истории

Ближайшие события

Московский туристический хакатон
Дата 23 марта – 7 апреля
Место
Москва Онлайн
Геймтон «DatsEdenSpace» от DatsTeam
Дата 5 – 6 апреля
Время 17:00 – 20:00
Место
Онлайн