Нейроморфный процессор Intel Loihi. Что это и как это работает?



    Представьте себе будущее, где сложные решения могут приниматься быстрее и адаптироваться со временем. Где социальные и индустриальные проблемы могут автоматически решаться, используя полученный ранее опыт. Это будущее, где свидетели, используя приложения распознания изображений, могут проанализировать снимки с уличных камер и быстро передавать данный для поиска пропавшего или похищенного человека. Это будущее, где светофоры автоматически синхронизируют свою работу с потоком транспорта, уменьшая заторы и оптимизируя время старта и остановки. Это будущее, где роботы более автономны, а эффективность работы значительно выше.

    Данные высказывания принадлежат доктору Майклу Мэйбери (корпоративный вице-президент и управляющий директор Intel Labs в Intel Corporation), который поделился с общественностью деталями нового творения Intel Labs — нейроморфного чипа Loihi.

    Растущий спрос на сбор, анализ данных и принятие решений в области высокодинамических и неструктурированных природных данных приводит к росту спроса на компьютеры, которые опережают классические CPU и GPU архитектуры. Дабы поспевать за темпом эволюции технологий и дабы вывести сами вычисления за пределы ПК или сервера, Intel работал последние 6 лет над специализированными архитектурами, которые могут ускорить классические компьютерные платформы. Intel также увеличил объем инвестиций в области ИИ (искусственный интеллект) и нейроморфных вычислений.


    Доктор Майкл Мэйбери (корпоративный вице-президент и управляющий директор Intel Labs в Intel Corporation)

    Наша работа в области нейроморфных вычислений построена на десятилетиях исследований и партнерства, начиная с профессора CalTech Карвер Мида (Carver Mead), который был известен за свою фундаментальную работу в проектировании полупроводников. Комбинация опыта в микросхемах, физике и биологии создала условия для новых идей. Идеи были просты, но революционны: сравнить машины с человеческим мозгом. Высокий уровень сотрудничества разных структур и людей в данной область исследований способствует дальнейшему развитию науки.

    Компания Intel, в лице своего подразделения Intel Labs, разработала первый в своем роде самообучающийся нейроморфный чип — Loihi — который имитирует функционирование мозга в процессе обучения работы на основе влияния окружающей среды. Этот невероятно энергоэффективный чип, который использует данные для обучения и формирования выводов, становится умнее со временем и не нуждается в тренировке традиционным путем. Он использует новый подход к вычислению через асинхронный пикинг.

    Мы считаем, что ИИ находится в зачаточном состоянии, и больше методов и архитектур, таких как Loihi, будут сопутствовать его развитию. Нейроморфные вычисления черпают вдохновение из нашего нынешнего понимания архитектуры мозга и связанных с ним вычислений. Нейронные сети мозга передают информацию с помощью импульсов или пиков, модулируя синаптические связи на основе тайминга этих пиков, и хранят эти изменения локально на межсоединениях. Интеллектуальное поведение формируется за счет кооперативного и сопернического взаимодействия между окружающей средой и несколькими регионами в нейронных сетях мозга.

    Модели машинного обучения, такие как глубокое обучение, достигли значительных успехов за счет использования обширных учебных наборов для распознания объектов и событий. Однако эти системы машинного обучения не так хороши, если не имеют учебных наборов для распознания определенного события, происшествия или элемента.

    Потенциальная польза от самообучающегося чипа практически безгранична. К примеру, считывание пульса человека в разных условиях (после бега, во время приема пищи, перед сном) и передача этих данных в нейроморфную систему для определения «нормального» сердцебиения. Далее система может постоянно мониторить полученные данные пульса и определять те случаи, когда пульс не есть «нормальный». Система может быть персонализирована под каждого пользователя.

    Этот тип логики может также применятся и в других сферах, таких как кибербезопасность, где аномалии или отличия в потоках данных могут идентифицировать взлом, поскольку система знает какие показатели являются «нормальными» (правильными).

    Подробнее о тестовом чипе Loihi

    Исследовательский тестовый чип Loihi обладает цифровыми схемами, которые имитируют основную механику мозга, делая машинное обучение более быстрым и эффективным, при этом требуя меньших вычислительных мощностей. Нейроморфная модель черпает вдохновение из того, как нейроны взаимодействуют и учатся, используя пики и синоптическую пластичность, которые могут быть смоделированы на основе тайминга. Это может помочь компьютерам саморганизоваться и принимать решения на основе шаблонов и ассоциаций.

    Тестовый вариант чипа Loihi представляет высокую гибкость обучения в пределах самого чипа. Это позволяет машинам быть автономными и адаптироваться в реальном времени, вместо ожидания следующего апдейта из облака. Исследователи продемонстрировали обучение со скоростью в 1 миллион раз превышающей скорость типичных пиковых нейронных сетей (при измерении общих операций) во время процесса получение как можно более точного результата в решении задачи распознавания цифр MNIST (объёмная база данных образцов рукописного написания цифр). В сравнении с другими технологиями, такими как свёрточные нейронные сети и нейронные сети глубокого обучения, тестовый чип Loihi использовал гораздо меньше ресурсов для решения тех же задач.

    Возможности самообучения, раскрытые этим тестовым чипом, имеют огромный потенциал в совершенствовании автоматизированных и индустриальных приложений, как и персональной робототехники — любое приложение, которое извлечет пользу из автоматизированных операций и непрерывного обучения в неструктурированной среде. К примеру, распознание движения машины или велосипеда.

    Кроме того, этот метод в 1000 раз более энергоэффективен чем стандартные методы для компьютерного обучения.

    В первой половине 2018 года тестовый чип Loihi будет распространен среди передовых университетов и исследовательских институтов (работающих в сфере развития ИИ).

    Дополнительные сведения

    Функции Loihi включают в себя:

    • Полностью асинхронная нейроморфная многоядерная сетка, которая поддерживает широкий спектр разреженных, иерархических и повторяющихся нейронных сетевых топологий с каждым нейроном, способным связываться с тысячами других нейронов.
    • Каждое нейроморфное ядро включает в себя механизм обучения, который можно запрограммировать для адаптации параметров сети во время работы, поддерживая контролируемые, неконтролируемые, подкрепляющие и другие обучающие парадигмы.
    • Изготовление на основе технологии 14 нм Intel.
    • В общей сложности 130 000 нейронов и 130 миллионов синапсов.
    • Разработка и тестирование нескольких алгоритмов с высокой алгоритмической эффективностью для задач, включая планирование маршрутов, удовлетворение ограничений (constraint satisfaction), sparse coding, изучение словарей и обучение и адаптация динамических моделей.

    Что дальше?

    Ожидается, что благодаря развитию в области вычислительных и алгоритмических инноваций преобразующая сила ИИ сильно повлияет на общество. Сегодня мы в Intel всеми силами стараемся оправдывать закон Мура и держать лидерство в производстве, чтобы представить на рынке широкий спектр продуктов — процессоры Intel Xeon, технологию Intel Nervana, технологию Intel Movidius и Intel FPGA, — которые удовлетворяют уникальные требования ИИ процессов.

    Аппаратное и программное обеспечение, как общего, так и персонального назначения сейчас вступают в игру по полной программе. К примеру, процессор Intel Xeon Phi широко используется в мире для научных вычислений, он создал некоторые из самых крупных моделей интерпретации крупномасштабных научных проблем. Movidius Neural Compute Stick — яркий пример 1 ватт развертывания ранее обученных моделей.

    Рабочие нагрузки ИИ развиваются, становясь все более сложными и разнообразными. Они будут испытывать пределы возможностей сегодняшних доминирующих вычислительных архитектур и ускорять новые нестандартные подходы. Глядя в будущее, Intel считает, что нейроморфные вычисления дают возможность обеспечить производительность уровня exascale, вдохновленной тем, как работает мозг.

    Я надеюсь, вы будете следить за захватывающими событиями, которые произойдут в Intel Labs в следующие несколько месяцев, когда мы распространим такую концепцию как нейромофные вычисляя с целью поддержки мировой экономики на следующие 50 лет. В будущем с нейроморфными вычислениями, все что вы можете вообразить и даже больше перейдет от возможного к реальному, поскольку поток интеллекта и принятия решений становится все более быстрым.

    Видение Intel касательно разработки инновационных вычислительных архитектур остается непоколебимым, и мы знаем, как выглядит будущее вычислений, потому что сегодня мы его создаем.

    Источник: newsroom.intel.com

    На правах рекламы.Акция! Только сейчас получите до 4-х месяцев бесплатного пользования VPS (KVM) c выделенными накопителями в Нидерландах и США (конфигурации от VPS (KVM) — E5-2650v4 (6 Cores) / 10GB DDR4 / 240GB SSD или 4TB HDD / 1Gbps 10TB — $29 / месяц и выше, доступны варианты с RAID1 и RAID10), полноценным аналогом выделенных серверов, при заказе на срок 1-12 месяцев, условия акции здесь, cуществующие абоненты могут получить 2 месяца бонусом!

    Как построить инфраструктуру корп. класса c применением серверов Dell R730xd Е5-2650 v4 стоимостью 9000 евро за копейки?
    • +7
    • 15,8k
    • 9
    ua-hosting.company 126,11
    Хостинг-провайдер
    Поделиться публикацией
    Комментарии 9
    • +2
      Похоже на itanium-2
      • +1

        Услуги репетитора для вашего компьютера. Недорого. Гарантия. Живу в вашем районе.

        • +1
          Дрессировка собак и лойхов. Приучение кошек к лотку. Недорого.
          • +1
            «Дрессировка собак и лойхов»
            — Интель лойхов?

            «Видение Intel касательно разработки инновационных вычислительных архитектур остается непоколебимым, и мы знаем, как выглядит будущее вычислений, потому что сегодня мы его создаем.»
            Larrabee (Xeon Phi), Itanium, возможно и Atom скорее похожи на неудачные и весьма убыточные метания, чем на точное предвидение.
            • +1
              Непоколебимое видение сталкивается с непоколебимой реальностью.
        • +4
          Вот за что я не люблю маркетологические статьи, а также статьи документации от MS на MSDN, так это длииииииииииииные преамбулы в 1/3...1/2 длины всей статьи. Между заголовком и текстом напрямую связанным с этим заголовком очень много воды.
          Наша работа в области нейроморфных вычислений построена на десятилетиях исследований и партнерства, начиная с профессора CalTech...

          — [голосом Светлакова] да хоть на пятидесятилетиях… давайте уже к делу
          Мы считаем, что ИИ находится в зачаточном состоянии, и больше методов и архитектур, таких как Loihi, будут сопутствовать его развитию. Нейроморфные вычисления черпают вдохновение...

          — [голосом Светлакова] пусть черпают… проц-то чем интересен?
          image
          • 0
            опять проф применение узкоспецимализировыанное и терможвачка под крышкой, опять этот сокет без ног и т.д. ФУ… низачод!
            • +2
              Надмозговой перевод на Хабре — дело привычное, но… «синоптическая пластичность»(!), разрази меня гром! Нейрон, подстраивающийся под погоду? А что, ново!
              • +2
                Нет, синоптическая пластичность, это когда синоптики сначала пообещали солнце и +30, а по факту была гроза и град. На вопрос, какого, собственно, хера, они пластично отвечают, что-то вроде «ну так мы же предупреждали».

              Только полноправные пользователи могут оставлять комментарии. Войдите, пожалуйста.

              Самое читаемое