0,0
рейтинг
23 марта 2013 в 19:56

Кратко о гидродинамике: уравнения движения

Написав предыдущий пост, исторический и отчасти рекламный (хотя потенциальные абитуриенты такое вряд ли читают), можно перейти и к разговору «по существу». К сожалению, высокой степени популярности описания добиться вряд ли получится, но всё же постараюсь не устраивать курс сухих лекций. Хотя, от сухости избавиться не удалось, да и пост писался в результате ровно месяц.

В нынешней публикации описаны основные уравнения движения идеальной и вязкой жидкости. По возможности кратко рассмотрен их вывод и физический смысл, а также описаны несколько простейших примеров их точных решений. Увы, этими несколькими примерами доступные аналитически решения уравнений Навье-Стокса в значительной мере исчерпываются. Напомню, что Институт Клэя отнёс доказательство существования и гладкости решений к проблемам тысячелетия. Гении уровня Перельмана и выше — задача вас ждёт.


Понятие сплошной среды



В, если можно так выразиться, «традиционной» гидродинамике, сложившейся исторически, фундаментом является модель сплошной среды. Она отвлекается от молекулярной структуры вещества, и описывает среду несколькими непрерывными полевыми величинами: плотностью, скоростью (определяемой через суммарный импульс молекул в заданном элементе объёма) и давлением. Модель сплошной среды предполагает, что в любом бесконечно малом объёме содержится ещё достаточно много частиц (как принято говорить, термодинамически много — числа, близкие по порядку величины к числу Авогадро — 1023 шт.). Таким образом, модель ограничена снизу дискретностью молекулярной структуры жидкости, что в задачах типичных пространственных масштабов совершенно несущественно.

Однако, такой подход позволяет описать не только воду в пробирке или водоёме, и оказывается куда более универсальным. Поскольку наша Вселенная на больших масштабах практически однородна, то, как ни странно, она начиная с некоторого масштаба превосходно описывается как сплошная среда, с учётом, конечно же, самогравитации.

Другими, более приземлёнными применениями сплошной среды являются описание свойств упругих тел, динамики плазмы, сыпучих тел. Также можно описывать топлу людей как сжимаемую жидкость.

Параллельно с приближением сплошной среды, в последние годы набирает обороты кинетическая модель, основанная на дискретизации среды на небольшие частицы, взаимодействующие между собой (в простейшем случае — как твердые шарики, отталкивающиеся при столкновении). Такой подход возник в первую очередь благодаря развитию вычислительной техники, однако существенно новых результатов в чистую гидродинамику не превнёс, хотя оказался крайне полезен для задач физики плазмы, которая на микроуровне не является однородной, а содержит электроны и положительно заряженные ионы. Ну и опять же для моделирования Вселенной.

Уравнение неразрывности. Закон сохранения массы





Самый элементарный закон. Пусть у нас есть какой-то совершенно произвольный, но макроскопический объём жидкости V, ограниченный поверхностью F (см. рис.). Масса жидкости внутри него определяется интегралом:



И пусть с жидкостью внутри него не происходит ничего, кроме движения. То есть, там нет химических реакций и фазовых переходов, нет трубок с насосами или чёрных дыр. Ну и всё происходит с маленькими скоростями и для малых масс вещества, потому никакой теории относительности, искривления пространства, самогравитации жидкости (она становится существенна на звёздных масштабах). И пусть сам объём и границы еего неподвижны. Тогда единственное, что может изменить массу жидкости в нашем объёме — это её перетекание через границу объёма (для определённости — пусть масса в объёме убывает):



где вектор j — поток вещества через границу. Точкой, напомним, обозначается скалярное произведение. Поскольку границы объёма, как было сказано, неподвижны, то производную по времени можно внести под интеграл. А правую часть можно преобразовать к такому же, как слева, интегралу по объёму по теореме Гаусса-Остроградского.

В итоге, в обеих частях равенства получается интеграл по одному и тому же совершенно произвольному объёму, что позволяет приравнять подинтегральные выражения и перейти к дифференциальной форме уравнения:



Здесь (и далее) использован векторный оператор Гамильтона. Образно говоря, это условный вектор, компоненты которого — операторы дифференцирования по соответствующим координатам. С его помощью можно очень кратко обозначать разного рода операции над скалярами, векторами, тензорами высших рангов и прочей математической нечистью, основные среди которых — градиент, дивергенция и ротор. Не буду останавливаться на них детально, поскольку это отвлекает от основной темы.

Наконец, поток вещества равен массе, переносимой через единичную площадку за единицу времени:



Окончательно, закон сохранения массы (называемый также уравнением неразрывности) для сплошной среды таков:



Это выражение наиболее общее, для среды, обладающей переменной плотностью. В реальности, эксперимент свидетельствует о крайне слабой сжимаемости жидкости и практически постоянном значении плотности, что с высокой точностью позволяет применять закон сохранения массы в виде условия несжимаемости:



которое с не менее хорошей точностью работает и для газов, пока скорость течения мала по сравнению со звуковой.

Уравнение Эйлера. Закон сохранения импульса



Весь относительно громоздкий процесс колдовства преобразования интегралов, использованный выше, даёт нам не только уравнение неразрывности. Точно такие же по сути преобразования позволяют выразить законы сохранения импульса и энергии, и получить в итоге уравнения для скорости жидкости и для переноса тепла в ней. Однако пока не будем сильно торопиться, и займёмся не просто сохранением импульса, а даже сохранением импульса в идеальной несжимаемой жидкости — т.е. рассмотрим модель с полным отсутствием вязкости.

Рассуждения практически те же самые, только теперь нас интересует не масса, а полный импульс жидкости в том же самом объёме V. Он равен:



При тех же самых условиях, что и выше, импульс в объёме может меняться за счёт:
  • конвективного переноса — т.е. импульс «утекает» вместе со скоростью через границу
  • давления окружающих элементов жидкости
  • просто за счёт внешних сил, например — от силы тяжести.

Соответствующие интегралы (порядок отвечает списку) дают такое соотношение:



Начнём их преобразовывать. Правда, для этого нужно воспользоваться тензорным анализом и правилами работы с индексами. Конкретнее, к первому и второму интегралам применяется теорема Гаусса-Остроградского в обобщённой форме (она работает не только для векторных полей). И если перейти к дифференциальной форме уравнения, то получится следующее:



Крестик в кружочке обозначает тензорное произведение, в данном случае — векторов.

В принципе, это уже уравнение Эйлера, однако его можно чуток упростить — ведь закон сохранения массы никто не отменял. Раскрыв здесь скобки в дифференциальных операторах и приведя затем подобные слагаемые, мы увидим, что три слагаемых благополучно собираются в уравнение неразрывности, и потому дают в сумме ноль. Итоговое уравнение оказывается таким:



Если перейти в систему отсчёта, связанную с движущейся жидкостью (не будем заострять внимание на том, как это делается), мы увидим, что уравнение Эйлера выражает второй закон Ньютона для единицы объёма среды.

Учёт вязкости. Уравнение Навье-Стокса



Идеальная жидкость, это, конечно, хорошо (правда, всё равно точно не решается), но во многих случаях учёт вязкости необходим. Даже в той же конвекции, в течении жидкости по трубам. Без вязкости вода вытекала бы из наших кранов с космическими скоростями, а малейшая неоднородность температуры в воде приводила бы к её крайне быстрому и бурному перемешиванию. Потому давайте учтём сопротивление жидкости самой себе.

Дополнить уравнение Эйлера можно различными (но эквивалентными, конечно же) путями. Воспользуемся базовой техникой тензорного анализа — индексной формой записи уравнения. И пока также отбросим внешние силы, чтобы не путались под руками / под ногами / перед глазами (нужное подчеркнуть). При таком раскладе всё, кроме производной по времени, можно собрать в виде дивергенции одного такого тензора:



По смыслу, это плотность потока импульса в жидкости. К нему и нужно добавить вязкие силы в виде ещё одного тензорного слагаемого. Поскольку они явно приводят к потере энергии (и импульса), то они должны вычитаться:



Идя обратно в уравнение с таким тензором, мы получим обобщённое уравнение движения вязкой жидкости:



Оно допускает любой закон для вязкости.

Принято считать очевидным, что сопротивление зависит от скорости движения. Вязкость же, как перенос импульса между участками жидкости с различными скоростями, зависит от градиента скорости (но не от самой скорости — тому мешает принцип относительности). Если ограничиться разложением этой зависимости до линейных слагаемых, получится вот такой жутковатый объект:



в котором величина перед производной содержит 81 коэффициент. Однако, используя ряд совершенно разумных предположений об однородности и изотропности жидкости, от 81 коэффициента можно перейти всего к двум, и в общем случае для сжимаемой среды, тензор вязких напряжений равен:



где η (эта) — сдвиговая вязкость, а ζ (зета или дзета) — объёмная вязкость. Если же среда ещё и несжимаема, то достаточно одного коэффициента сдвиговой вязкости, т.к. второе слагаемое при этом уходит. Такой закон вязкости



носит название закона Навье, а полученное при его подстановке уравнение движения — это уравнение Навье-Стокса:



Точные решения



Главной проблемой гидродинамики является отсутствие точных решений её уравнений. Как бы с этим ни боролись, но получить действительно всеобщих результатов не удаётся до сих пор, и, напомню, вопрос существования и гладкости решений уравнений Навье-Стокса входит в список Проблем тысячелетия института Клэя.

Однако, несмотря на столь грустные факты, некоторые результаты есть. Здесь будут представлены далеко не все, а лишь самые простые случаи.

Потенциальные течения



Особый интерес представляют течения, в которых жидкость не завихряется. Для такой ситуации можно отказаться от рассмотрения векторного поля скорости, поскольку она выражается через градиент скалярной функции — потенциала. Потенциал же удовлетворяет хорошо изученному уравнению Лапласа, решение которого полностью определяется тем, что задано на границах рассматриваемой области:



Более того, при отсутствии вязкости из уравнения Эйлера можно однозначно выразить и давление, что вовсе замечательно и приводит нас к полному решению задачи. Ах, если бы так было всегда… то гидродинамики, наверное, уже бы и не было как современной и актуальной отрасли.

Дополнительно можно упростить задачу предположением, что течение жидкости двумерно — скажем, всё движется в плоскости (x,y), и ни одна частица не перемещается вдоль оси z. Можно показать, что в таком случае скорость может быть также заменена скалярной функцией (на этот раз — функцией тока):



которая при потенциальном течении удовлетворяет условиям Коши-Лагранжа из теории функций комплексной переменной и воспользоваться соответствующим математическим аппаратом. Полностью совпадающим с аппаратом электростатики. Теория потенциальных течений развита на высоком уровне, и в принципе хорошо описывает большой спектр задач.

Простые течения вязкой жидкости



Решения для вязкой жидкости чаще всего удаётся получить, когда из уравнения Навье-Стокса благодаря свойствам симметрии задачи выпадает нелинейное слагаемое.

Сдвиговое течение Куэтта


Самая элементарная задачка. Канал с неподвижной нижней и подвижной верхней стенкой, которая движется равномерно с некоторой скоростью. На границах жидкость прилипает к ним, так что скорость жидкости равна скорости границы. Этот результат является экспериментальным фактом, и как-то даже авторы первых экспериментов не упоминаются, просто — по совокупности экспериментов.

В такой ситуации от уравнения Навье-Стокса останется уравнение вида v'' = 0, и потому профиль скорости в канале окажется линейным:



Данная задача является практически базовой для теории смазки, т.к. позволяет непосредственно определить силу, которую требуется приложить к верхней стенке для её движения с конкретной скоростью.

Течение Пуазейля


Вторая по элементарности — ламинарное течение в канале. Или в трубе. Результат оказывается один — профиль скорости является параболическим:



На основе решения Пуазейля можно определить расход жидкости через сечение канала, но, правда, только при ламинарном течении и гладких стенках. С другой стороны, для турбулентного потока и шероховатых стенок точных решений нет, а есть лишь приближённые эмпирические закономерности.

Стекание слоя жидкости по наклонной плоскости


Тут — почти как в задаче Пуазейля, только верхняя граница жидкости будет свободной. Если предположить, что по ней не бегут никакие волны, и вообще сверху нет трения, то профиль скорости будет практически нижней половинкой предыдущего рисунка. Правда, если из полученной зависимости вычислить скорость течения для средней равнинной речки, она составит около 10 км/с, и вода должна самопроизвольно отправляться в космос. Наблюдаемые в природе низкие скорости течения связаны с развитой завихренностью и турбулентностью потока, которые эффективно увеличивают вязкость воды примерно в 1 млн. раз.

В следующем посте планируется рассказать о законе сохранения энергии и соответствующих ему уравнениях переноса тепла при течении жидкости.
Продолжать?

Проголосовало 470 человек. Воздержалось 89 человек.

Только зарегистрированные пользователи могут участвовать в опросе. Войдите, пожалуйста.

Кирилл Циберкин @kbtsiberkin
карма
59,0
рейтинг 0,0
Пользователь
Реклама помогает поддерживать и развивать наши сервисы

Подробнее
Реклама

Самое читаемое

Комментарии (39)

  • +10
    Приятно видеть такие статьи на хабре. Отчасти жалко, что имея диплом по гидравлике, я ушел все же в IT. Но такова судьба в России.
    Мне кажется для хабра было бы лучше, если давать статьи по смежной теме: связка контроллеров и гидро/пневмосистемы, или применение вычислительных мощностей для расчета работы гидросистем (устойчивость ГС и пр.)
  • +1
    Сколько я не видел статей о гидро- и газо-динамике, ни один автор не переводил формулы вроде "image" на математический язык (div(v) в данном случае). Без такой расшифровки, уравнения — лишь бессмысленный набор символов, поскольку физики не следуют никакой строгой системе при назначении смысла подобным выражениям.
    • +3
      Со строгостью вопрос интересный. Но такие обозначения, как: ∇∙ — дивергенция, ∇x — ротор, ∇² — лапласиан, выглядят вполне устоявшимися, хотя типичными в большей мере для западной литературы. Не менее часто пишут операторы и как div, rot и Δ, однако противоречия это вызывает редко.
    • +5
      Извините, а разве набла — это не математический язык? Дивергенция и скалярное умножение на набла суть одно и то же, разве нет? По крайней мере, при заданной системе координат.
      • –2
        Нет, ∇ — просто символ не имеющий сам по себе никакого математического смысла. Попробуйте объяснить как он свободно превращается из градиента в дивергенцию.
        • +2
          Имеющий, и вполне определенный смысл: (∂/∂x, ∂/∂y, ∂/∂z).
        • 0
          Он имеет смысл векторного оператора дифференцирования.
          • НЛО прилетело и опубликовало эту надпись здесь
            • +1
              А почему «в общем случае»? Вроде бы вообще не является. Зато является ковектором (или формой, если так привычнее). И, пока система координат фиксирована, мало чем отличается от обычного вектора.
              • НЛО прилетело и опубликовало эту надпись здесь
                • 0
                  Да, это я понимаю. Но вектор и ковектор являются объектами, независимыми от того, в какой системе координат мы их рассматриваем. Фраза «градиент скалярной функции в общем случае вектором не является» (заметьте, что в ней нет ни слова про систему координат) подразумевает, что при некоторых ограничениях на участвующие в ней объекты градиент все же будет вектором. А это не так, поскольку чтобы градиент выглядел (вел себя) как вектор, нужно зафиксировать класс систем координат, а система координат не относится к числу объектов, фигурирующих в этой фразе. Так что проблема была в словах «вообще говоря», правильнее было бы «только иногда выглядит как вектор» :)
                  • НЛО прилетело и опубликовало эту надпись здесь
                    • –2
                      если система координат фиксирована, то как понять, вектор это или ещё что-то?


                      Если система координат фиксирована, то вектор — это просто набор из n чисел.

                      чем же всё-таки отличается?


                      Тем, что в имеющих смысл формулах он участвует как вектор-столбец, т.е. для скалярного произведения при соблюдении матричной нотации приходится писать xTy.

                      И в-третьих, какой объект отличается не мало?


                      «Не мало» отличается объект другой валентности, например, матрица :)
        • 0
          Может все же стоит сначала выучить математику за пределами технарского курса «высшей математики»? А то в нем половина фактов и методов не объясняются нормально и выглядят черной магией. Начать с общей алгебры, разобраться, почему векторное произведение вводят только в пространстве R3, потом понять, что такое внешнее произведение, дифференциальные формы. Тогда может и с операторами в голове прояснится.
          • 0
            У меня нет проблем с пониманием дифференциальных форм. Все операции с ними четко сформулированы на математическом языке.
            • 0
              От «четко сформулированы» до «понимания» довольно далеко и в случае понимания Вы вряд ли написали бы

              Попробуйте объяснить как он свободно превращается из градиента в дивергенцию.


              Потому что нет никаких дивергенций и градиентов, а есть одно внешнее дифференцирование, которое превращается в один из этих операторов по сути в зависимости от интерпретации его аргумента (элемент касательного пространства или форма). Ну а оператор «звезда Ходжа» позволяет формализовать те правила, которые в случае оператора набла кажутся магией.
          • 0
            • 0
              Да, я знаю. Заметьте, я там написал «вводят», потому что векторное произведение в R7 в обычных курсах вводят даже реже, чем тело кватернионов. Ну и используется оно тоже очень редко на практике (уж заведомо реже тех же кватернионов).
        • 0
          Оператор набла — векторная величина. В зависимости от того, на какую функцию он действует — он является либо градиентом, либо дивергенцией. При действии на скалярную функцию получаем то, что называется градиентом этой функции, при действии на векторную функцию(скалярном умножении) — получаем дивергенцию, скалярную величину.
          Вообще говоря, вполне можно рассматривать ее как внешний дифференциал
          Так что все просто — это «превращение» заложено в сам оператор, но де-факто не имеет места, ибо для скаляра это всегда градиент, а для вектора — всегда дивергенция.
          • 0
            Определите понятие «действует». Скалярное умножение по определению умножает два вектора в одном векторном пространстве и выдает число. А операторы и векторные функции одному пространству не принадлежат.
            • 0
              Действует = является отображением.
              Поскольку векторный оператор набла есть отображение одного векторного пространства на другое с заданным скалярным произведением (без коммутативности), то я не вижу, в чем проблема.
              • 0
                Если объект является отображением, то у него есть область определения и область значений. Чему равны эти области? Скалярным функциям или векторным? Скалярное произведение на каком пространстве вы имеете в виду (область определения ∇, область значений ∇, область значений векторных функций?) и что по вашему не коммутативно? Скалярное произведение коммутативно по определению.
  • НЛО прилетело и опубликовало эту надпись здесь
    • +1
      Наши преподаватели Фейнмановские лекции называют школьным курсом, теории строгой маловато.
      • НЛО прилетело и опубликовало эту надпись здесь
  • НЛО прилетело и опубликовало эту надпись здесь
    • 0
      Тут не скалярное умножение — нет точки между ними. Это просто применение оператора. Но как именно его нужно применять к тензорам второго порядка я не знаю.
      • НЛО прилетело и опубликовало эту надпись здесь
        • 0
          Значит тут точка означает что-то другое… Возможно это скалярное произведение по одной из координат тензора.
    • +3
      Здесь написана дивергенция тензора, т.е. вектор вида \nabla_{j} T_{ij}, содержащий также d компонент. Или, можно сказать по-иному, однократная свёртка оператора набла с тензором.
      • НЛО прилетело и опубликовало эту надпись здесь
      • 0
        Верно ли, что нужно суммировать именно по второй координате? Для не симметричных тензоров суммирование по разным координатам даст разные результаты.
        • 0
          В данном случае, суммирование по конкретной координате проистекает из интегральной формы закона сохранения импульса (например, закон пишется для компоненты импульса (ρ vj ):

          ∫ vk(ρvj) dSk = ∫ ∇k(vk(ρvj)) dV,

          и тензор под оператором заведомо симметричен.
  • –1
    Могу быть заминусован, но…
    В свое время я халатно относился к алгебре, геометрии, высшей математике. Какие книги можно почитать (желательно с упражнениями), чтобы увеличить уровень знания области? И если область дискретной математики более менее понятна, то линейная алгебра, в особенности интегралы с производными, повергают меня в интеллектуальный шок.
  • 0
    а для кого статья?
    для тех, кто знает, что такое гамильтониан?
    и когда набла это градиент, а когда дивергенция?
  • 0
    У Ладыженской дан хороший математический анализ вопросам существования единственности решения в уравнениях Навье-Стокса, как для ламинара, так и для турбулента. Кстати, именно у неё есть доказанная теорема о том, что при ламинаре и стационарности во внутренних задачах есть единственное решение. Получается, что если труба гофрированная и возмущения (амплитуда геометрии образующей) малы, то ряд сходится. Задачи со свободной поверхностью представляют большой интерес (геометрия дюн, барханов, поверхности кожи дельфинов, ...), поведение пристеночного слоя плюс стратификация. Пишите так же доступно как начали. Жду продолжения.
    • 0
      Спасибо за комментарий о доступности изложения. Надеюсь, следующие посты пойдут чаще. Пока выведу уравнение переноса тепла в идеальной и вязкой жидкости (примерно подобно тому, как тут описано), а в дальнейшем уже перейду к конкретным задачкам, и, возможно, CFD.

      А строгость изложения… Всё же я — физик, скорее даже вычислитель, и дискуссия в комментариях выше по поводу того, чем же является набла, от меня совершенно далека.
      • 0
        Вы будете смеяться, но я, хоть и математик, но совершенно прикладной, занимаюсь вычислительными задачами, причем в основном в области физики (Фурье-оптика, оптика электронных пучков, обратные задачи электроимпедансной томографии и т.п.). Но в какой-то момент меня утомило то, что векторное произведение и ротор определены только в трехмерном пространстве и я выучил соответствующий кусок теории. Не скажу, чтобы очень помогло в работе, но некоторая приятная ясность возникает :)
  • 0
    Теперь я понимаю, что чувствуют люди с физическим образованием читая на хабре статью о препарирование очередного трояна!

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.