Пользователь
262,4
рейтинг
17 февраля 2014 в 19:05

Интересно и познавательно: разгонный блок «Бриз-М» tutorial


Хорошая реакция на первый пост о космическом симуляторе Orbiter и, как минимум, двести человек, которые заинтересовались и скачали аддоны к нему, привели меня к идее продолжить цикл постов образовательной и игровой направленности. Также, я хочу облегчить переход от первого поста, в котором всё делает автоматика, не требуя ваших действий, к самостоятельным экспериментам, чтобы не получился анекдот о рисовании совы. Этот пост имеет следующие цели:
  • Рассказать о семействе разгонных блоков «Бриз»
  • Дать представление об основных параметрах орбитального движения: апоцентре, перицентре, наклонении орбиты
  • Дать представление об основах орбитальной механики и запусках на геостационарную орбиту (ГСО)
  • Предоставить простое руководство по освоению ручного выхода на ГСО в симуляторе


Введение


Об этом мало задумываются, но семейство разгонных блоков «Бриз» — «Бриз-М», «Бриз-КМ» — это пример аппарата, разработанного уже после распада СССР. Причин такой разработки было несколько:
  • На основе МБР УР-100 разрабатывалась конверсионная ракета-носитель «Рокот», для которой был бы полезен разгонный блок (РБ).
  • На «Протоне» для выведения на ГСО использовался РБ «ДМ», который использовал «неродную» для «Протона» пару «кислород-керосин», имел время автономного полёта всего 7 часов, да и грузоподъёмность его можно было бы увеличить.

В 1990-1994 годах прошли испытательные пуски и, в мае-июне 2000 года состоялись полёты обеих модификаций «Бриза» — «Бриз-КМ» для «Рокота» и «Бриз-М» для «Протона». Главное различие между ними — наличие дополнительных сбрасываемых топливных баков на «Бризе-М», которые дают бОльший запас характеристической скорости (delta-V) и позволяют выводить более тяжелые спутники. Вот фотография, которая очень хорошо иллюстрирует разницу:


Конструкция


Блоки семейства «Бриз» отличаются очень плотной компоновкой:


Более подробный чертёж

Обратите внимание на технические решения:
  • Двигатель находится внутри «стакана» в баке
  • Внутри баков также находятся баллоны с гелием для наддува
  • Баки горючего и окислителя имеют общую стенку (благодаря использованию пары НДМГ/АТ это не представляет технической сложности), нет увеличения длины блока из-за межбакового отсека
  • Баки являются несущими — нет силовых ферм, которые бы требовали дополнительного веса и увеличивали длину
  • Сбрасываемые баки фактически являются половиной ступени, что, с одной стороны, требует лишнего веса на стенки, с другой — позволяет увеличивать запас характеристической скорости за счет сброса пустых баков.

Плотная компоновка экономит геометрические размеры и вес, но она имеет и свои недостатки. Например, двигатель, который, работая, излучает тепло, находится очень близко к бакам и трубопроводам. И сочетание более высокой (на 1-2 градуса, в пределах спецификации) температуры топлива с более высокой теплонапряженностью работы двигателя в процессе работы (тоже в пределах спецификации) привело к закипанию окислителя, нарушению охлаждения турбины ТНА жидким окислителем и нарушению её работы, что вызвало аварию РБ при выведении спутника «Ямал-402» в декабре 2012 года.
В качестве двигателей РБ используется комбинация из двигателей трех типов: маршевого С5.98 (14Д30) тягой 2 тонны, четырех двигателей коррекции (фактически это двигатели осаждения, ullage motors), которые включаются перед пуском маршевого двигателя для осаждения топлива на дно баков, и двенадцати двигателей ориентации тягой 1,3 кг. Маршевый двигатель имеет весьма высокие параметры (давление в камере сгорания ~100 атм, удельный импульс 328,6 с) несмотря на открытую схему. Его «отцы» стояли на марсианских станциях «Фобос» а «деды» — на посадочных лунных станциях типа «Луна-16». Маршевый двигатель может гарантированно включаться до восьми раз, а срок активного существования блока не меньше суток.
Масса полностью заправленного блока составляет до 22,5 тонн, полезная нагрузка достигает 6 тонн. Но суммарная масса блока после отделения от третьей ступени ракеты-носителя чуть меньше 26 тонн. При выводе на геопереходную орбиту РБ недозаправляется, а полностью заполненный бак для прямого вывода на ГСО выводил максимум 3,7 тонны полезной нагрузки.Тяговооруженность блока получается равной ~0.76. Это недостаток РБ «Бриз», но небольшой. Дело в том, что после отделения РБ+ПН находятся на незамкнутой орбите, что требует импульса на довыведение, а небольшая тяга двигателя приводит к гравитационным потерям. Гравитационные потери составляют примерно 1-2%, что весьма немного. Также, длительные периоды работы двигателя повышают требования к надёжности. С другой стороны, у маршевого двигателя гарантированный срок работы до 3200 секунд (почти час!).

Немного о надежности

Семейство РБ «Бриз» эксплуатируется весьма активно:
  • 4 полёта «Бриз-М» на «Протоне-К»
  • 72 полёта «Бриз-М» на «Протоне-М»
  • 16 полётов «Бриз-КМ» на «Рокоте»

Итого 92 полёта на 16 февраля 2014 года. Из них произошло 5 аварий (частичный успех с «Ямал-402» я записал в аварию) по вине блока «Бриз-М» и 2 по вине «Бриз-КМ» что даёт нам надёжность 92%. Рассмотрим причины аварий более подробно:
  1. 28 февраля 2006, ArabSat 4A — преждевременный останов двигателя из-за посторонней частицы, попавшей в сопло гидротурбины (источник 1, источник 2), единичный производственный дефект.
  2. 15 марта 2008, AMC-14 — преждевременный останов двигателя, разрушение высокотемпературного газопровода (источник), потребовалась его доработка.
  3. 18 августа 2011, Экспресс-АМ4. Необоснованно «заужен» временной интервал подворота гиростабилизированной платформы, неправильная ориентация (источник), ошибка программистов.
  4. 6 августа 2012, Telkom 3, Экспресс-МД2. Останов двигателя из-за засорения магистрали наддува (источник), производственный дефект.
  5. 9 декабря 2012, Ямал-402. Останов двигателя из-за выхода из строя ТНА, сочетание неблагоприятных факторов температурного режима (источник)
  6. 8 октября 2005, «Бриз-КМ», Cryosat, неразделение второй ступени и РБ, нештатная работа ПО (источник), ошибка программистов.
  7. 1 февраля 2011, «Бриз-КМ», Гео-ИК2, нештатный импульс двигателя, предположительно из-за отказа системы управления, из-за отсутствия телеметрии точную причину установить невозможно.

Если проанализировать причины аварий, то с проблемами конструкции и ошибками проектирования связаны только две — прогар газопровода и нарушение охлаждения ТНА. Все прочие аварии, причина которых известна достоверно, связаны с проблемами качества производства и подготовки к пуску. Это неудивительно — космическая отрасль требует очень высокого качества работы, и ошибка даже рядового сотрудника может привести к аварии. Сам по себе «Бриз» не является неудачной конструкцией, однако, стоит отметить отсутствие запаса прочности из-за того, что для обеспечения максимальных характеристик РБ материалы работают близко к границе своей физической прочности.

Полетаем


Пора перейти к практике — отправиться вручную на геостационарную орбиту в Orbiter'е. Для этого нам потребуются:
Релиз Орбитера, если вы его ещё не скачали после прочтения первого поста, вот ссылка.
Аддон «Proton LV» скачать отсюда

Немного теории

Из всех параметров орбиты здесь нас будут интересовать три параметра: высота перицентра (для Земли — перигей), высота апоцентра (для Земли — апогей) и наклонение:

  • Высота апоцентра — это высота самой высокой точки орбиты, обозначается как На.
  • Высота перицентра — это высота самой низкой точки орбиты, обозначается как Нп.
  • Наклонение орбиты — это угол между плоскостью орбиты и плоскостью, проходящей через экватор Земли (в нашем случае орбит вокруг Земли), обозначается как i.

Геостационарная орбита — это круговая орбита с высотой перицентра и апоцентра 35 786 км над уровнем моря и наклонением 0 градусов. Соответственно, наша задача разбивается следующие этапы: выйти на низкую околоземную орбиту, поднять апоцентр до 35 700 км, изменить наклонение до 0 градусов, поднять перицентр до 35 700 км. Изменять наклонение орбиты выгоднее в апоцентре, потому что там меньше скорость спутника, а, чем меньше скорость, тем меньшую delta-V надо приложить для её изменения. Одна из хитростей орбитальной механики состоит в том, что иногда выгоднее поднять апоцентр гораздо выше нужного, изменить наклонение там, и позже опустить апоцентр до нужного. Траты на подъем и спуск апоцентра выше нужного + изменение наклонения могут быть меньше, чем изменение наклонения на высоте нужного апоцентра.

План полёта

В сценарии с «Бризом-М» надо вывести «Sirius-4», шведский спутник связи, запущенный в 2007 году. За прошедшие годы его уже успели переименовать, теперь это «Астра-4А». План его выведения был такой:

Понятное дело, что мы, выходя на орбиту вручную, лишаемся точности автоматов, исполняющих расчеты баллистиков, поэтому наши параметры полёта будут с довольно большими ошибками, но это не страшно.

Этап 1. Выход на опорную орбиту

Этап 1 занимает время от запуска программы до выхода на круговую орбиту высотой примерно 170 км и наклонением 51 градус (тяжкое наследие широты Байконура, при пуске с экватора было бы сразу 0 градусов).
Сценарий Proton LV / Proton M / Proton M — Breeze M (Sirius 4)

От загрузки симулятора до отделения РБ от третьей ступени можно любоваться видами — всё делает автоматика. Разве что необходимо переключить фокус камеры на ракету с вида с земли (нажимать F2 до значений слева-сверху absolute direction или global frame).
В процессе выведения рекомендую переключиться на вид «изнутри» по F1, подготовиться к тому, что нас ждет:

Кстати, в Orbiter можно включить паузу по Ctrl-P, это может вам пригодиться.
Немного пояснений о значениях важных для нас показателей:

После отделения третьей ступени мы оказываемся на незамкнутой орбите с угрозой упасть в район Тихого океана, если мы будем действовать медленно или неверно. Для того, чтобы избежать такой печальной участи, нам следует выйти на опорную орбиту, для чего нам следует:
  1. Остановить вращение блока нажатием кнопки Num 5. Т.н. режим KillRot (остановка вращения). После фиксации положения режим автоматически выключается.
  2. Переключить вид назад на вид вперед кнопкой C.
  3. Переключить индикатор лобового стекла в орбитальный режим (Orbit Earth сверху) нажатием кнопки H.
  4. Клавишами Num 2 (поворот вверх), Num 8 (поворот вниз), Num 1 (поворот влево), Num 3 (поворот вправо), Num 4 (крен влево), Num 6 (крен вправо) и Num 5 (остановка вращения) повернуть блок по направлению движения с углом тангажа примерно 22 градуса и зафиксировать положение.
  5. Начать процедуру запуска двигателя (сначала Num +, потом, не отпуская, Ctrl).

Если вы все сделаете правильно, картинка будет примерно такая:

После включения двигателя:
  1. Создать вращение, которое зафиксирует угол тангажа (пара нажатий Num 8 и угол не будет заметно меняться).
  2. В процессе работы двигателя удерживать угол тангажа в диапазоне 25-30 градусов.
  3. Когда значения перицентра и апоцентра будут в районе 160-170 км, выключить двигатель кнопкой Num *.

Если всё прошло хорошо, будет что-то вроде:

Самая нервная часть закончилась, мы на орбите, упасть уже некуда.

Этап 2. Выход на промежуточную орбиту

Из-за низкой тяговооруженности, апоцентр до 35 700 км приходится поднимать в два этапа. Первый этап — это выход на промежуточную орбиту с апоцентром ~5000 км. Специфика проблемы — надо разгоняться так, чтобы апоцентр не оказался в стороне от экватора, т.е. надо разгоняться симметрично относительно экватора. В этом нам поможет проекция схемы выведения на карту Земли:

Картина для запущенного на днях Турксат 4А, но это неважно.
Подготовка к выходу на промежуточную орбиту:
  1. Переключить левый многофункциональный дисплей в режим карты (Левый Shift F1, Левый Shift M).
  2. С помощью ускорения времени (ускорить в 10 раз R, замедлить в 10 раз T) подождать до пролёта над Южной Америкой.
  3. Сориентировать блок в положение по вектору орбитальной скорости (носом по направлению движения). Можно нажать кнопку [ , чтобы это делала автоматика, но здесь это не очень эффективно, лучше вручную.
  4. Придать блоку вращение вниз для сохранения ориентации по вектору орбитальной скорости.

Должно получиться что-то вроде:

В районе широты 27 градусов надо включить двигатель, и, удерживая ориентацию по вектору орбитальной скорости, лететь до достижения апоцентра 5000 км. Можно включать ускорение 10х. По достижении апоцентра 5000 км, выключить двигатель.
Музыка, по-моему, очень подходит к разгону на орбите

Если всё прошло хорошо, то получим что-то типа:


Этап 3. Выход на переходную орбиту

Очень похоже на этап 2:
  1. С помощью ускорения времени (ускорить в 10 раз R, замедлить в 10 раз T, можно спокойно ускорять до 100х, 1000х не советую) подождать до пролёта над Южной Америкой.
  2. Сориентировать блок в положение по вектору орбитальной скорости (носом по направлению движения).
  3. Придать блоку вращение вниз для сохранения ориентации по вектору орбитальной скорости.
  4. В районе широты 27 градусов надо включить двигатель, и, удерживая стабилизацию по вектору орбитальной скорости, лететь до достижения апоцентра 35700 км. Можно включать ускорение 10х.
  5. Когда во внешнем топливном баке кончится топливо, сбросить его нажатием D. Запустить двигатель снова.


Сброс топливного бака, видна работа двигателей осаждения

Результат. Обратите внимание, я поторопился выключить двигатель, апоцентр 34,7 тысячи км. Это не страшно, для чистоты эксперимента оставим так.

Красивый вид

Этап 4. Изменение наклонения орбиты

Если вы всё делали с небольшими ошибками, то апоцентр будет в районе экватора. Порядок действий:
  1. Ускоряя время до 1000х подождать подлёта к экватору.
  2. Сориентировать блок перпендикулярно полёту, вверх, если смотреть с внешней стороны орбиты. Для этого подойдет автоматический режим Nml+, который активируется нажатием кнопки ;(она же ж)
  3. Включить двигатель.
  4. Если после маневра по обнулению наклонения останется топливо, можно потратить его на поднятие перицентра.
  5. После окончания топлива кнопкой J отделить спутник, раскрыть его солнечные панели и антенны Alt-A, Alt-S


Начальная позиция перед маневром

После маневра

Этап 5. Самостоятельное выведение спутника на ГСО

У спутника есть двигатель, с помощью которого можно поднять перицентр. Для этого в районе апоцентра ориентируем спутник по вектору орбитальной скорости и включаем двигатель. Двигатель слабый, надо повторять несколько раз. Если всё будете делать правильно, у спутника ещё останется примерно 20% топлива на коррекцию возмущений орбиты. В реальности, воздействие Луны и других факторов приводит к тому, что орбита спутников искажается, и приходится тратить топливо на поддержание требуемых параметров.
Если у вас всё получилось, картинка будет примерно следующей:


Ну и небольшая иллюстрация того, что спутник на ГСО находится над одним местом Земли:


Схема пуска Турксат 4А, для сравнения




UPD: посоветовавшись с aykSpace, заменил уродливую самодельную кальку с Орбитеровских Prograde/Retrograde на реально существующий термин «по/против вектора орбитальной скорости»
UPD2: Со мной связался специалист по адаптации полезных нагрузок для «Бриза-М» ГКНПЦ им. Хруничева, добавил пару замечаний к статье:
  1. На суборбитальную траекторию (начало этапа 1) в реальности выводится не 28 т, а чуть меньше 26, потому что РБ не заправляют полностью.
  2. Гравитационные потери составляют всего 1-2%
Филипп Терехов @lozga
карма
542,7
рейтинг 262,4
Пользователь
Реклама помогает поддерживать и развивать наши сервисы

Подробнее
Реклама

Самое читаемое

Комментарии (48)

  • +2
    Супер! Правда я начинаю осваивать не орбитер, а кербал спейс.
    Застрял на выходе на орбиту. Есть конечно всякие «лети туда, поверни туда», но ускальзывает сама механика действия. Хочется понять, почему процессы идут именно так.
    • 0
      Можете посмотреть, как здесь это происходит, принципы-то одинаковые. Мануалы по KSP есть, но не знаю, какие из них хорошие, и не буду советовать наобум.
      • 0
        Угу. Первые шаги делал благодаря вашим топикам в том числе. До этого крайне слабо понимал что за компоненты у ракет и на что обращать внимание.
        • +2
          Жаль, что на Хабре уже писали про KSP, это очень удачный симулятор с точки зрения проектирования аппаратов — распределение delta-V по ступеням, тяговооруженность и т.п.
          • +2
            Вдобавок захватывающий. Жена от контры меня быстрее отрывает, чем от зеленых человечков, хоть особой тяги к космосу и астрономии не питал раньше) На мой взгляд, КСП может быть хорошей демонстрационной платформой для образовательного курса. Некое подобие практики.
            • +1
              Там еще есть моды, которые показывают при построении корабля основные параметры, такие как масса каждой ступени и дельта V. К тому же можно усложнить себе задачу — добавить систему жизнеобеспечения для кербанавтов и систему связи для спутников.
              • 0
                Вот, кстати, никак понять не могу, почему разработчики КСП не включили калькулятор массы и тяговооружённости в саму игру. Можно, конечно, посчитать всё и в ручную, но масса аппарата спрятана слишком глубоко.
            • 0
              Между прочим, они недавно объявили о запуске специальной образовательной версии.
    • +1
      Посмотрите www.youtube.com/channel/UCxzC4EngIsMrPmbm6Nxvb-A
      Там как раз серия обучающих роликов началась. А вообще в KSP сейчас на много проще. Раньше мы не могли планировать орбиты и делали все на глаз.
      • 0
        Я вот по этому циклу учился: www.youtube.com/watch?v=MP23Grw1toM&list=PLkCDxo2DPJcNi9hc8taxR0OofBVm2OXuF

        Вполне неплохо и информативно.
        • 0
          Просто Скотт Менли не просто рассказывает как играть в эту игру, он еще и как в ролевую играет. Никаких загрузок при неудачах. Запуск ракет не чаще раза в неделю. А попутно еще рассказывает об отрасли. Про наши ракеты тоже говорил, когда запускал что-то подобное. И задачи он ставит часто неординарные и сложные. Например: куда можно долететь на одном оранжевом баке? youtu.be/yNeVuwIrftQ
    • 0
      Рекомендую канал pebblegarden
      www.youtube.com/user/pebblegarden/videos

      Без поросячьего визга и толково, в отличии от этих ваших скоттов менли. Жаль канал заброшен — но политика гугла по навязыванию своего сраного гуглплюса уже напоминает шантаж…
      • 0
        Перед работой глянул ролик для полных нубов от «поросёнка». Довольно шумно и многословно, но все же увидел несколько полезных для меня моментов. Не замечал раньше. (Например. Играю в режим с постепенным развитием и думал, что на ранних этапах SAS не доступен. Оказалось работает. Столько мучений… Или установка цели маневра, про которую не знал совсем. Игровые обучения еще более скудные.)
        Но опять же, на высоте такой-то поверните туда-то. После этой статьи я видел, что он делает все разумно и меняет апогей в перигее и наоборот, только всё втихую. Почему наклон надо делать на высоте 10км? Че не 15 или 20. Хоть труды Циолковского начинай штудировать.
        • 0
          Мне кажется, 10 км — это эмпирическое значение, взятое по принципу «примерно где-то здесь».
          • 0
            Как выбираются значения для реальных аппаратов? Опытный путь мне кажется чересчур дорогим.
            • 0
              Реальные аппараты начинают маневрировать часто практически сразу со старта, чтобы на старт не упасть. Для каждой РН параметры и профиль должны рассчитывать баллистики при проектировании, учитывая массу сложных и скучных для игры вещей. Поэтому априорное решение навскидку для игры оправдано.
            • 0
              Чтобы оптимально выйти на орбиту на идеально сферической планете без атмосферы, достаточно ускориться прямо. Но на Земле есть горы, поэтому нужно подняться выше. Оптимально было бы подниматься под углом в 45 градусов. Но у Земли есть атмосфера, которая сильно мешает в самом низу.

              В случае с KSP все упрощено до трех шагов:
              1) летим вверх, смотрим на индикатор атмосферы сверху. Там четыре зоны — плотная, средняя, разреженная и нет атмосферы.
              2) Как только вылетаем из плотной, поворачиваем на 45 градусов, поднимаем апоцентр.
              3) Долетаем до апоцентра — поднимаем перицентр.

              В случае с реальной ракетой, грубо говоря, подбираются такие параметры чтобы эти шаги были непрерывны. Т. е. не поворачиваем на 45 градусов на высоте 10 км, а медленно поворачиваем со старта так, чтобы к моменту когда мы доберемся до 10 км мы были уже повернуты на 45 градусов. А затем поднимаем апоцентр так, чтобы к моменту когда мы его подняли, мы были уже в нем и повернуты по курсу.
              • 0
                Не всё так просто. Главный фактор — это профиль тяговооруженности, которая, с одной стороны, возрастает от опустошения баков, а с другой стороны падает от того, что верхние ступени слабее нижних. В зависимости от коструктивных решений приходится выбирать и углы 60 и 30 градусов. Но общее правило подтверждается — до 10 км выгоднее лететь вертикально, а потом плавно ложиться на угол тангажа 60 или 45 градусов, постепенно приближая его к нулю. Обычно первая ступень сбрасывается на 15-35 км, и начало маневра с 10 км производится на участке большой тяговооруженности, что позволяет увеличить время до апоцентра до приемлемых для работы следующих ступеней величин.
            • +2
              Я тут случайно наткнулся на теоретический закон — «при оптимальной программе выведения тангенс угла тангажа должен быть линейной функцией времени» (Сихарулидзе Ю.Г. «Баллистика летательных аппаратов», 1982). Учитывая, что при линейном изменении угла его тангенс есть фунция нелинейная, для получения линейного изменения угла тангенса надо менять угол тангажа нелинейно. А, учитывая, что в KSP стандартное пилотирование вручную, сделать это оптимально фактически невозможно. Так что лучше пилотируйте по эмпирическим законам «лететь до 10 км, потом повернуть».
              • 0
                Понял. Спасибо, что вспомнили про вопрос)
  • +2
    Интересная статья, спасибо!
    Сам угораю по KSP, в orbiter еще не играл. А там физика так-же как в KSP считается? КА всегда находиться в зоне влияния(SOI) только одного тела, а остальные не учитываются?
    Еще хочется увидеть астрономических расчетов. Например как рассчитать dV для выхода на ГСО и тому подобное.
    • +2
      В Orbiter физика круче, там моделируются: задача трёх тел, несферичность гравитационного поля Земли, атмосфера реалистичнее и много ещё чего.
    • 0
      KSP после Орбитера смотрится детским мультиком =)
      • +1
        Это, имхо, преувеличение. В каждом — своя прелесть. KSP проще в полёте, но глубже из-за конструирования своих аппаратов. В Orbiter есть аддон Velcro Rockets, который вроде бы позволяет экспериментировать с размерами и параметрами ракет, но он наверняка (я не пользовался) проигрывает по удобству интерфейсу проектирования KSP.
  • 0
    Кстати, у кого-нибудь получилось нормально играть в Орбитер под вайном? У меня "a glitch which makes planets and texts stay invisible when the camera is at a certain position", и играть с этим абсолютно нереально, треть небесной сферы не видно. Нет ли более рабочего порта/способа запуска для пингвинофилов?
    • 0
      Присоединяюсь.

      Необходимо разработать инструкцию для Wine.
      Дабы пользователи альтернативных операционных систем могли установить и испытать.

      Со своей стороны готов оказать помощь в разработке такой инструкции.
      • 0
        Нашел инструкцию по запуску под вайном, с использованием модуля графического клиента, вроде работает, FPS не просел. Качаю сборник дополнений, посмотрим, будет ли работать.
        • 0
          Нет, с D3D9-клиент не запускает половину сценариев, и вываливается с ошибками постоянно.
          Попробовал еще OGLA-клиент, он вроде нормально работает, но FPS уж очень низкий.
  • НЛО прилетело и опубликовало эту надпись здесь
    • +1
      Всё сразу: и годовщина, и дивный перл про «бортовой номер метеорита» с «я не ракетчик, я филолог», и личный опыт относительно недавней попытки изменения наклонения орбиты в перицентре с предсказуемым результатом.
  • 0
    Этот бы софт да в 50ые годы…
    • +3
      Советские баллистики были очень квалифицированными, насколько я заметил по мемуарам. А популяризация идёт на существующих технологиях — когда-то на программируемых калькуляторах на Луну виртуально садились, каждому времени своё.
  • 0
    1. Картинка с орбитой Луны(http://habrastorage.org/getpro/habr/post_images/223/f89/d79/223f89d794d72c44dd369dcd7c794f0c.jpg) специально неправильная, чтобы схематично понятнее было? Угол наклона орбиты Луны к плоскости эклиптики намного меньше.
    2. На изображении со схемой запуска «Sirius-4» что скрывается за не упомянутыми в статье буквами — фи, лямбда, омега и т.д.?
    3. Орбитер позволяет честные межпланетные миссии, с гравитационными манёврами вокруг планет, выходом на орбиты других планет? Если имеет и практически это осуществимо, то чрезвычайно интересно было бы увидеть аналогичный разбор в следующей статье, например о полёте Кассини или Мессенджера.

    • 0
      1. Вроде бы Луну не обещали
      2. Судя по всему, \omega — аргумент перегея, \Omega — долгота восходящего узла, \varphi — истинная аномалия, \lambda — сумма истинной аномалии и аргумента перегея
      3. Можно
    • +1
      1. Картинка выбрана максимально простая, чтобы были видны только На, Нп, i, чья она — неважно.
      2. Можно посмотреть здесь
      3. Да, позволяет. Возможно, но не скоро, двигаться будем от простого к сложному, а гравитационный маневр — это сложно.
    • 0
      В ютубе, например, попадаются видео о том как рассчитывать гравитационные маневры в Орбитере, например видел полет от Луны к Марсу, с использованием ускорения гравитационным маневром вокруг Земли.
  • +1
    Уже набило оскомину, но всё же.
  • +3
    Спасибо за статью! Одного не понял, поясните пожалуйста, почему перегей поднимается импульсом по вектору скорости в том самом перегее?
    • +3
      Это ошибка, спасибо. Апоцентр выгоднее менять в перицентре и наоборот.
  • +1
    Что же у вас Земля такая грустная на первом виде с орбиты? Спутник с возу — Земле легче!
    • 0
      Я, пока экспериментировал с алгоритмами первого этапа, наронял туда блоков. А в этот раз обратно, «в гости», не прилетело.
  • +1
    семейство разгонных блоков «Бриз» — «Бриз-М», «Бриз-КМ» — это пример аппарата, разработанного уже после распада СССР

    В 1990-1994 годах прошли испытательные пуски


    Как это?
    • +1
      То, что пускалось в 1990-1994, называлось «Бриз-К», и в некоторых источниках, считается упрощённой версией, а сам сайт центра им. Хруничева называет «близкими прототипами». Перерыв в пять лет, мне кажется, означает, что разрабатывали, фактически, в 1995-1999. Да и конкурс, который выиграл «Бриз-М» проводился в 1994 году.
  • +1
    А что происходит со сброшенными топливными баками и разгонным блоком после вывода полезной нагрузки?
    Оно все так и остается летать по переходным орбитам?
    • 0
      Третья ступень «Протона» падает в район Тихого океана, сбрасываемый бак летает по своей траектории с перигеем 258 км, поэтому постепенно затормозится и упадёт. Разгонный блок уходит на орбиту увода с перигеем 6800 км, и будет так летать очень долго, потому что с таким высоким перигеем тормозиться об атмосферу практически не будет.
  • 0
    Интересная ситуация.
    Хотел было утащить картинку к себе в ленту. Но потом стали терзать смутные сомнения.
    Сразу скажу, я не баллистик, но баллистику проходили. Так вот разве не на линии узлов эффективнее наклонение менять? Что схемой выведения лишний раз подтверждается, т.к. импульсы даны как раз в восходящем узле.
    Или имелось в виду, что сначала надо вытянуть орбиту вдоль эклиптики, чтобы как раз линия узлов пришла на апоцентр?
    • 0
      Т.е. эта шутка имеет место только для аргумента перицентра 0 или 180 градусов. Или я чего то не понимаю.
    • +1
      Да, это для случая, когда апоцентр и перицентр находятся на линии узлов.

Только зарегистрированные пользователи могут оставлять комментарии. Войдите, пожалуйста.